1. Given the equation representing a reaction:

$$N_2O_4$$
 (g) $\leftrightarrow 2NO_2$ (g)

Which statement describes this reaction at equilibrium?

- (1) The concentration of $N_2O_4(g)$ must equal the concentration of $NO_2(g)$.
- (2) The concentration of $N_2O_4(g)$ and the concentration of $NO_2(g)$ must be constant.
- (3) The rate of the forward reaction is greater than the rate of the reverse reaction.
- (4) The rate of the reverse reaction is greater than the rate of the forward reaction.
- 2. Given the equation representing a phase change at equilibrium:

$$C_2H_5OH(4) \leftrightarrow C_2H_5OH(g)$$

Which statement is true?

- (1) The forward process proceeds faster than the reverse process.
- (2) The reverse process proceeds faster than the forward process.
- (3) The forward and reverse processes proceed at the same rate.
- (4) The forward and reverse processes both stop.

3. Which statement must be true for any chemical reaction at equilibrium?

- (1) The concentration of the products is greater than the concentration of the reactants.
- (2) The concentration of the products is less than the concentration of the reactants.
- (3) The concentration of the products and the concentration of the reactants are equal.
- (4) The concentration of the products and the concentration of the reactants are constant.

4. Given the reaction at equilibrium:

$$H_2(g) + Br_2(g) \leftrightarrow 2 HBr(g)$$

The rate of the forward reaction is

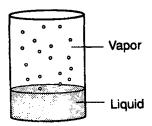
- (1) greater than the rate of the reverse reaction
- (2) less than the rate of the reverse reaction
- (3) equal to the rate of the reverse reaction
- (4) independent of the rate of the reverse reaction
- 5. Which type or types of change, if any, can reach equilibrium?
 - (1) a chemical change, only
 - (2) a physical change, only
 - (3) both a chemical and a physical change
 - (4) neither a chemical nor a physical change
- 6. Which balanced equation represents a phase equilibrium?

(1)
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

(2)
$$2NO_{9}(g) \rightleftharpoons N_{2}O_{4}(g)$$

(3)
$$\operatorname{Cl}_2(g) \rightleftharpoons \operatorname{Cl}_2(\ell)$$

(4)
$$3O_2(g) \implies 2O_3(g)$$


- 7. The temperature at which the solid and liquid phases of matter exist in equilibrium is called its
 - (1) melting point
 - (2) boiling point
 - (3) heat of fusion
 - (4) heat of vaporization

8. Given the phase equilibrium in a closed container:

$$H_2O(g) \leftrightarrow H_2O(l)$$

Compared to the rate of gas formation, the rate of liquid formation is

- (1) slower
- (3) the same
- (2) faster
- 9. The vapor pressure of a liquid at a given temperature is measured when the rate of evaporation of the liquid becomes
 - (1) less than the rate of condensation
 - (2) greater than the rate of condensation
 - (3) equal to the rate of condensation
 - (4) equal to a zero rate of condensation
- 10. A closed system is shown in the diagram below.

The rate of vapor formation at equilibrium is

- (1) less than the rate of liquid formation
- (2) greater than the rate of liquid formation
- (3) equal to the rate of liquid formation
- 11. A sample of water in a sealed flask at 298 K is in equilibrium with its vapor. This is an example of
 - (1) chemical equilibrium
 - (2) phase equilibrium
 - (3) solution equilibrium
 - (4) static equilibrium

12. Ammonia is produced commercially by the Haber reaction:

$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g) + heat$$

The formation of ammonia is favored by

- (1) an increase in pressure
- (2) a decrease in pressure
- (3) removal of $N_2(g)$
- (4) removal of $H_2(g)$
- 13. Given the system at equilibrium:

$$H_2(g) + F_2(g) \leftrightarrow 2 HF(g) + heat$$

Which change will *not* shift the point of equilibrium?

- (1) changing the pressure
- (2) changing the temperature
- (3) changing the concentration of $H_2(g)$
- (4) changing the concentration of HF(g)
- 14. Given the reaction at equilibrium:

4 HCl(g) +
$$O_2(g) \leftrightarrow 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$$

If the pressure on the system is increased, the concentration of $\operatorname{Cl}_2(g)$ will

- (1) decrease
- (3) remain the same
- (2) increase
- 15. Given the closed system at equilibrium:

$$CO_2(g) \leftrightarrow CO_2(aq)$$

As the pressure on the system increases, the solubility of the CO₂(g)

- (1) decreases
- (3) remains the same
- (2) increases

16. Given the equilibrium reaction:

$$2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g) +$$

Heat

When the pressure on the system in increased, the concentration of the SO₃ will

- (1) decrease
- (3) remain the same
- (2) increase

17. Given the reaction at equilibrium:

$$2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g)$$

If the temperature remains constant, an increase in pressure will

- (1) have no effect on the equilibrium
- (2) shift the equilibrium to the right
- (3) shift the equilibrium to the left
- (4) change the value of the equilibrium constant

18. Given the reaction at equilibrium:

$$2 A(g) + 3 B(g) \leftrightarrow A_2 B_3(g) + \text{heat}$$

Which change will not affect the equilibrium concentrations of A(g), B(g), and $A_2B_3(g)$?

- (1) adding more A(g)
- (2) adding a catalyst
- (3) increasing the temperature
- (4) increasing the pressure

19. The addition of a catalyst to a system at equilibrium will increase the rate of

- (1) the forward reaction, only
- (2) the reverse reaction, only
- (3) both the forward and reverse reactions
- (4) neither the forward nor reverse reaction

20. What will happen if a catalyst is added to the system at equilibrium?

$$A + B \leftrightarrow AB$$

- (1) The equilibrium concentration of AB will increase.
- (2) The equilibrium concentration of AB will decrease.
- (3) The rates of the forward and reverse reactions will change.
- (4) The equilibrium constant for the reaction will change.
- 21. Given the equation representing a reaction at equilibrium:

$$N_{9}(g) + 3H_{9}(g) \rightleftharpoons 2NH_{3}(g) + energy$$

Which change causes the equilibrium to shift to the right?

- (1) decreasing the concentration of $H_2(g)$
- (2) decreasing the pressure
- (3) increasing the concentration of N₂(g)
- (4) increasing the temperature

22. Given the system at equilibrium:

$$2 POCl_3(g) + energy \rightleftharpoons 2 PCl_3(g) + O_2(g)$$

Which changes occur when $O_2(g)$ is added to this system?

- (1) The equilibrium shifts to the right and the concentration of PCI₃(g) increases.
- (2) The equilibrium shifts to the right and the concentration of PCl₃(g) decreases.
- (3) The equilibrium shifts to the left and the concentration of PCl₃(g) increases.
- (4) The equilibrium shifts to the left and the concentration of PCl₃(g) decreases.

23. Given the balanced equation representing a reaction:

$$2HCl(aq) + Na_2S_2O_3(aq) \rightarrow S(s) + H_2SO_3(aq) + 2NaCl(aq)$$

Decreasing the concentration of Na₂S₂O₃(aq) decreases the rate of reaction because the

- (1) activation energy decreases
- (2) activation energy increases

- (3) frequency of effective collisions decreases
- (4) frequency of effective collisions increases

24. Given the reaction at equilibrium:

91.8kJ

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) +$$

What occurs when the concentration of H₂(g) is increased?

- (1) The rate of the forward reaction increases and the concentration of N ₂(g) decreases.
- (2) The rate of the forward reaction decreases and the concentration of N ₂(g) increases.
- (3) The rate of the forward reaction and the concentration of $N_2(g)$ both increase.
- (4) The rate of the forward reaction and the concentration of $N_2(g)$ both decrease.

25. Given the reaction at equilibrium:

$$N_2(g) + O_2(g) + energy \leftrightarrow 2 NO(g)$$

Which change will result in a *decrease* in the amount of NO(g) formed?

- (1) decreasing the pressure
- (2) decreasing the concentration of $N_2(g)$
- (3) increasing the concentration of $O_2(g)$
- (4) increasing the temperature

26. Given the solution at equilibrium:

$$Pbl_2(s) \leftrightarrow Pb^{2+}(aq) + 2l^{-}(aq)$$

The addition of which nitrate salt will cause a decrease in the concentration of $I^-(aq)$?

- (1) $Pb(NO_3)_2$
- (3) LiNO₃
- (2) $Ca(NO_3)_2$
- (4) KNO₃

27. Given the equation representing a reaction at equilibrium:

$$H_2(g) + I_2(g) + heat \leftrightarrow 2HI(g)$$

Which change favors the reverse reaction?

- (1) decreasing the concentration of HI(g)
- (2) decreasing the temperature
- (3) increasing the concentration of $l_2(g)$
- (4) increasing the pressure
- 28. Given the system at equilibrium:

$$N_2O_4(g) + 58.1 \text{ kJ} \leftrightarrow 2 \text{ NO}_2(g)$$

What will be the result of an increase in temperature at constant pressure?

- (1) The equilibrium will shift to the left, and the concentration of NO₂(g) will decrease.
- (2) The equilibrium will shift to the left, and the concentration of NO₂(g) will increase.
- (3) The equilibrium will shift to the right, and the concentration of NO₂(g) will decrease.
- (4) The equilibrium will shift to the right, and the concentration of NO₂(g) will increase.

29. Given the equilibrium reaction in a closed system:

$$H_2(g) + I_2(g) + heat \leftrightarrow 2 HI(g)$$

What will be the result of an increase in temperature?

- (1) The equilibrium will shift to the left and $[H_2]$ will increase.
- (2) The equilibrium will shift to the left and [H₂] will decrease.
- (3) The equilibrium will shift to the right and [HI] will increase.
- (4) The equilibrium will shift to the right and [HI] will decrease.
- 30. What occurs when the temperature is increased in a system at equilibrium at constant pressure?
 - (1) The rate of the forward reaction increases, and the rate of the reverse reaction decreases.
 - (2) The rate of the forward reaction decreases, and the rate of the reverse reaction increases.
 - (3) The rate of the endothermic reaction increases.
 - (4) The rate of the exothermic reaction decreases.
- 31. Given the reaction at equilibrium:

$$C_2(g) + D_2(g) \leftrightarrow 2 CD(g) + energy$$

Which change will cause the equilibrium to shift?

- (1) increase in pressure
- (2) increase in volume
- (3) addition of heat
- (4) addition of a catalyst

32. Given the reaction for the Haber process:

$$N_2 + 3 H_2 \leftrightarrow 2 NH_3 + heat$$

The temperature of the reaction is raised in order to

- (1) increase the percent yield of nitrogen
- (2) increase the rate of formation of ammonia
- (3) affect the forward reaction rate most
- (4) affect the reverse reaction rate least
- 33. Given the system at equilibrium:

$$PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq)$$

How will the addition of $Na_2CO_3(aq)$ affect $[Pb^{2+}](aq)$ and the mass of PbCO $_3(s)$?

- (1) [Pb²⁺](aq) will decrease and the mass of PbCO₃(s) Will decrease.
- (2) [Pb²⁺](aq) will decrease and the mass of PbCO₃(s) will increase.
- (3) $[Pb^{2+}]$ (aq) will increase and the mass of $PbCO_3(s)$ will decrease.
- (4) $[Pb^{2+}]$ (aq) will increase and the mass of $PbCO_3(s)$ will increase.
- 34. Given the reaction at equilibrium:

$$AgBr(s) \leftrightarrow Ag^{+}(aq) + Br^{-}(aq)$$

Which change occurs when KBr(s) is dissolved in the reaction mixture?

- (1) The amount of AgBr(s) decreases.
- (2) The amount of AgBr(s) remains the same.
- (3) The concentration of Ag⁺(aq) decreases.
- (4) The concentration of Ag⁺(aq) remains the same.

35. Given the solution at equilibrium:

 $CaSO_4(s) \leftrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq)$

When Na₂SO₄ is added to the system, how will

the equilibrium shift?

(1) The amount of CaSO₄(s) will decrease, and the concentration of Ca²⁺(aq) will decrease.

(2) The amount of CaSO₄(s) will decrease, and

the concentration of Ca²⁺(aq) will increase.

- (3) The amount of CaSO₄(s) will increase, and the concentration of Ca²⁺(aq) will decrease.
- (4) The amount of CaSO₄(s) Will increase, and the concentration of Ca²⁺(aq) will increase.

Equilibrium Review Answer Key [New Exam]

1. ____2___

2. ___3___

3. ___4___

4. ___3___

5. ___3___

6. ___3___

7. ___1___

8. ___3___

9. ___3___

10. ____3___

11. ____2___

12. ___1___

13. ___1___

14. ____2___

15. ____2___

16. ____2___

17. ___2

18. ____2___

19. ___3___

20. ___3___

21. ___3___

22. ___4___

23. ___3___

24. ___1___

25. ___2___

26. ___1___

27. ____2

28. ___4___

29. ___3___

30. ___3___

31. ___3___

32. ___2___

33. ____2

34. ___3

35. ___3___

5

				ā.
			·	