Types of Combined Gas Practice

Name:	
Date:	Pd:

_	
1	A gas occupies a volume of 40.0 milliliters at 20°C. If the volume is increased to 80.0 milliliters at constant pressure, the
•	resulting temperature will be equal to

- (1) $20^{\circ}\text{C} \times \frac{40.0\text{mL}}{80.0\text{mL}}$
- (2) $20^{\circ}\text{C} \times \frac{80.0\text{mL}}{40.0\text{mL}}$
- (3) $293K \times \frac{40.0mL}{80.0mL}$
- (4) $293K \times \frac{80.0mL}{40.0mL}$
- A 3.00-liter sample of gas is at 288 K and 1.00 atm. If the pressure of the gas is increased to 2.00 atm and its volume is decreased to 1.50 liters, the Kelvin temperature of the sample will be
 - (1) 576 K

(2) 432 K

(3) 288 K

- (4) 144 K
- 3) Which temperature change would cause the volume of a sample of an ideal gas to double when the pressure of the sample remains the same?
 - (1) from 200°C to 400°C
- (2) from 400°C to 200°C
- (3) from 200 K to 400 K
- (4) from 400 K to 200 K
- 4) The temperature of a 2.0-liter sample of helium gas at STP is increased to 27°C and the pressure is decreased to 80. kPa What is the new volume of the helium sample?
 - (1) 1.4 L

(2) 2.0 L

(3) 2.8 L

- (4) 4.0 L
- 5) As the temperature of a given sample of a gas decreases at constant pressure, the volume of the gas
 - (1) decreases
- (2) increases
- (3) remains the same
- 6) The pressure on a 200-milliliter sample of CO₂(g) at constant temperature is increased from 60 kPa to 120 kPa. What is the new volume of the gas?
 - (1) 300 mL
- (2) 100 mL
- (3) 600 mL
- (4) 400 mL
- A gas has a volume of 1,400 milliliters at a temperature of 20. K and a pressure of 1.0 atm. What will be the new volume when the temperature is changed to 40. K and the pressure is changed to 0.50 atm?
 - (1) 350 mL
- (2) 750 mL
- (3) 1.400 mL
- (4) 5,600 mL
- 8) If 60. liters of hydrogen gas at 546 K is cooled to 273 K at constant pressure, the new volume of the gas will be
 - (1) 120 L

(2) 20. L

(3) 30. L

- (4) 40. L
- 9) A 2.5 liter sample of gas is at STP. When the temperature is raised to 273°C and the pressure remains constant, the new volume of the gas will be
 - (1) 5.0 L

(2) 10. L

(3) 1.25 L

(4) 2.5 L

Types of Combined Gas

- (o) What volume will a 300.-milliliter sample of a gas at STP occupy when the pressure is doubled at constant temperature?
 - (1) 600. ml
- (2) 300. ml
- (3) 450. ml
- (4) 150. ml
- (i) Which changes in pressure and temperature occur as a given mass of gas at 50.6 kPa and 546 K is changed to STP?
 - (1) The pressure is doubled and the temperature is halved.
- (3) Both the pressure and the temperature are doubled.
- (2) The pressure is halved and the temperature is doubled.
- (4) Both the pressure and the temperature are halved.
- (12) A gas at STP has a volume of 1.0 liter. If the pressure is doubled and the temperature remains constant, the new volume of the gas will be
 - (1) 0.25 L

(2) 2.0 L

(3) 0.50 L

- (4) 4.0 L
- 13) Which graph best shows the relationship between the pressure of a gas and its average kinetic energy at constant volume?

- A gas sample has a volume of 25.0 milliliters at a pressure of 1.00 atmosphere. If the volume increases to 50.0 milliliters and the temperature remains constant, the new pressure will be
 - (1) 1.00 atm
- (2) 2.00 atm
- (3) 0.250 atm
- (4) 0.500 atm
- The volume of a gas is 250 liters at STP. If the pressure of the gas is held constant and the temperature is changed to -25°C, the final volume of the gas, in liters, will be equal to
 - $250 \times \frac{248}{273}$
- (2) $250 \times \frac{298}{273}$
- (3) $250 \times \frac{273}{298}$
- (4) $250 \times \frac{273}{248}$
- At a temperature of 273 K, a 400.-milliliter gas sample has a pressure of 760. millimeters of mercury. If the pressure is changed to 380. millimeters of mercury, at which temperature will this gas sample have a volume of 551 milliliters?
 - (1) 100 K

(2) 188 K

(3) 273 K

(4) 546 K

19. Each stoppered flask below contains 2 liters of a gas at STP.

Each gas sample has the same

(1) density

(3) number of molecules

(2) mass

- (4) number of atoms
- 20. Which graph shows the pressure-temperature relationship expected for an ideal gas?

- 21. A real gas differs from an ideal gas because the molecules of real gas have
- (1) some volume and no attraction for each other
- (2) some volume and some attraction for each other
- (3) no volume and no attraction for each other
- (4) no volume and some attraction for each other
- 22. In a closed system, as the temperature of a liquid increases, the vapor pressure of the liquid
- (1) decreases
- (3) remains the same
- (2) increases
- 23. Based on Reference Table H. which sample has the highest vapor pressure?
 - (1) · water at 20°C
- (3) ethanol at 50°C
- (2) water at 80°C
- (4) ethanol at 65°C
- 24. When the vapor pressure of water is 30 kPa, the temperature of the water is
- (1) 20°C

(3) 70°C

(2) 40°C

(4) 100°C

- 25. When a sample of a gas is heated at constant pressure, the average kinetic energy of its molecules
- (1) decreases, and the volume of the gas increases
- (2) decreases, and the volume of the gas decreases
- (3) increases, and the volume of the gas increases
- (4) increases, and the volume of the gas decreases
- _26. The graph below shows the relationship between vapor pressure and temperature for substance X.

What is the normal boiling point for substance X?

(1) 50°C

(3) 30°C

(2) 20°C

- (4) 40°C
- _27. Under the same conditions of temperature and pressure, which of the following gases would behave most like an ideal gas?
- (1) He(g)

- (3) Cl₂(g)
- (2) NH₃(g)

- (4) CO₂(g)
- __28. At the same temperature and pressure. 1.0 liter of CO(g) and 1.0 liter of CO₂(g) have
 - (1) equal masses and the same number of molecules
- (2) different masses and a different number of molecules
- (3) equal volumes and the same number of molecules
- 4) different volumes and a different number of molecules
- 29. Which of the following gases behaves most like an ideal gas?
 - (1) $H_2(g)$

(3) $NH_3(g)$

(2) O₂(g)

- (4) CO₂(g)
- 30. Based on Reference Table H, which substance has the weakest intermolecular forces?
- (1) ethanoic acid
- (3) propanone

(2) ethanol

(4) water

